BBA 46650

INORGANIC PYROPHOSPHATASE AND PHOTOSYNTHESIS BY ISOLATED CHLOROPLASTS

I. CHARACTERISATION OF CHLOROPLAST PYROPHOSPHATASE AND ITS RELATION TO THE RESPONSE TO EXOGENOUS PYROPHOSPHATE

J D. SCHWENN*, R. McC. LILLEY and D. A WALKER

Department of Botany, The University, Sheffield, S10 2TN (Great Britain)

(Received June 20th, 1973)

SUMMARY

- 1. A soluble, alkaline, Mg^{2+} -dependent inorganic pyrophosphatase (EC 3.6.1.1) has been isolated from the stroma of intact spinach and pea chloroplasts and purified some 100-fold. The enzyme has a high specificity for inorganic pyrophosphate and Mg^{2+} , and exhibits maximal activity at pH 8.2–8.6. The enzyme shows allosteric characteristics with Mg^{2+} as activator and optimal rates are obtained with a ratio of Mg^{2+} to PP_1 of approximately 4 to 1. The enzyme is inhibited by anionic PP_1 and by its own reaction product, orthophosphate.
- 2. If Mg²⁺ is excluded from the medium in which isolated chloroplasts are assayed, active photosynthetic oxygen evolution can still be observed. The addition of P₁, but not PP₁, will then offset a phosphate deficiency. If external Mg²⁺ is present PP₁ will also offset a phosphate deficiency and in these circumstances the rapidity and nature of the response is related to the external pyrophosphatase activity.
- 3. Evidence is presented that the chloroplast envelope is relatively impermeable to PP₁ and that the response to added PP₁ is due to external hydrolysis followed by entry of P₁ to the chloroplast. These results have significance concerning proposed mechanisms for control of photosynthesis.

INTRODUCTION

In studies on photosynthesis by isolated chloroplasts we have been impressed by the controlling influence of orthophosphate^{1,2}, and by the ability of inorganic pyrophosphate and pyrophosphatase to act as an "orthophosphate buffer", maintaining the external P₁ at or near its optimal concentration³. Originally it was found that both

Abbreviations HEPES, N-2-hydroxyethylpiperazine-N'-ethanesulphonic acid, MES, 2-(N-morpholino)-ethanesulphonic acid.

^{*} Present address Lehrstuhl für Biochemie der Pflanzen ND3/130, Ruhr-Universität-Bochum, 463 Bochum-Querenburg, Postfach 2148, Germany

P₁ and PP₁ could reinitiate photosynthetic O₂ evolution in P₁-deficient chloroplasts with stoichiometric ratios of approximately 3 O₂/P₁ and 6 O₂/PP₁. Except for an initial delay of about 15 s with PP₁, the kinetics of response were almost identical when the effect of adding PP₁ was compared with that of adding P₁ at twice the concentration⁴. Subsequently, with very carefully prepared chloroplasts, a longer delay was observed with PP₁ and very occasionally this was so prolonged that no response was observed during the 2–3-min period of observation, although the response to P₁ was still more or less immediate. In these circumstances the original rapidity of response to PP₁ could be restored if a small proportion of ruptured chloroplasts were included in the reaction mixture (Ludwig, L. J. and Walker, D. A., unpublished).

These results suggested that PP₁ was unable to cross the chloroplast envelope and that the normal response to PP₁ followed external hydrolysis by a pyrophosphatase released from ruptured chloroplasts. Previous studies with maize⁵, sugarcane⁶ and spinach chloroplasts^{7,8} have established the presence of an inorganic pyrophosphatase (EC 3.6.1.1.) in green plants^{6,9} which has similar properties to the more thoroughly investigated pyrophosphatases from *Escherichia coli*¹⁰ and yeast¹¹.

It therefore seemed desirable to reinvestigate the pyrophosphatase from spinach and pea chloroplasts, its regulation and localisation, and its relation to the effect of P₁ and PP₂ on photosynthesis by isolated chloroplasts

MATERIALS AND METHODS

Plant material, isolation of chloroplasts

Peas (Pisum sativum, var. "Feltham First") were grown in vermiculite in a greenhouse for 18-24 days at 15-20 °C. Spinach (Spinacea oleracea, var. Elsoms 24) was grown in the field. Freshly harvested leaf and stem material was used from peas, while the midribs were removed from the spinach leaves used. Approximately 100 g of material was homogenised for 2-4 s, using a Polytron blender, in 250 ml of isolation medium, containing 0 33 M sucrose, 25 mM 2-(N-morpholino)-ethanesulphonic acid (MES), 8.6 mM NaCl, 9.3 mM sodium p-isoascorbate, adjusted to pH 6.5 with KOH, and chilled to a consistency resembling melting snow. After blending for 3-5 s the suspension was filtered through first 2 layers of muslin and then 8 layers of muslin containing a layer of cotton wool. All subsequent operations were at 0 °C. The filtrate was immediately centrifuged in a swing-out head at $5000 \times q$ for 50 s including acceleration and then braked to a stop in approximately 7 s using a Christ model 17 centrifuge. The supernatant was poured off and the surface of the pellets gently rinsed with a solution containing 0.33 M sucrose and 1/25 dilution of resuspending medium. After draining, the chloroplasts were resuspended by gently mixing the pellets with about 2 ml of resuspending medium, using a small pad of cotton wool on the end of a glas rod. The resuspending medium contained 0.33 M sorbitol, 2 mM EDTA, 1 mM MnCl₂ and 50 mM N-2-hydroxyethylpiperazine-N'-ethanesulphonic acid (HEPES) adjusted to pH 7.6 with KOH. The chlorophyll content of chloroplast suspensions was determined by the method of Arnon¹².

Measurement of photosynthetic oxygen evolution

Photosynthetic oxygen evolution by twin chloroplast reaction mixtures was measured by oxygen electrodes and recorded simultaneously in the two-channel

588 J. D. SCHWENN et al.

apparatus described by Delieu and Walker¹³. Each reaction mixture contained 200 μg chlorophyll in a total volume of 2.0 ml, was maintained at 20 °C and illuminated with red light¹³

Isolation of inorganic alkaline pyrophosphatase

Chloroplasts from pea or spinach were isolated as described above, except that the homogenising medium contained in addition 5 mM MgCl₂ and, after centrifugation, the pellet was resuspended in homogenising medium (10 ml per 100 g plant material) and centrifuged again. The pellet of intact chloroplasts was resuspended for 30 min at 4 °C in a solution containing 50 mM Tris–HCl, 2 mM MgCl₂ and 0.5 mM EDTA (pH 7.8) which ruptured the envelopes entirely. The crude enzyme extract was separated from the chloroplasts by centrifugation at 15 000 × g for 30 min and stored frozen if not used immediately. The clear supernatant was fractionated with solid ammonium sulphate. The fraction 45–78 ° was collected after 30 min precipitation and redissolved in a solution containing 50 mM Tris–HCl and 5 mM MgCl₂ (pH 8.0). A 55–75 ° fraction was then obtained by the addition of an ice-cold solution of saturated (NH₄)₂SO₄ (pH 8.8). This precipitate was redissolved in 50 mM Tris–HCl, 2 mM MgCl₂ (pH 8.2) and dialysed against two further changes of this solution for 2 h each.

The dialysed crude enzyme was clarified by centrifugation and applied to a DEAE column (7 5 cm × 3 8 cm) pre-equilibrated with 25 mM Tris-HCl and 2 mM MgCl₂ (pH 8.0). The column was then washed with 100 ml 25 mM Tris-HCl, 2 mM MgCl₂ and 100 mM NaCl (pH 8.2). The pyrophosphatase activity was eluted with 25 mM Tris-HCl, 2 mM MgCl₂ and 280 mM NaCl (pH 8.8) The active fractions were bulked together and diluted 5 times with redistilled water and applied to a second DEAE column of the same dimensions as the first, pre-equilibrated with 25 mM Tris-HCl (pH 8.2) A gradient of 25 mM Tris-HCl at pH 8.2 (without NaCl) to 100 mM Tris-HCl at pH 8.8 with 300 mM NaCl, of a total volume of 1000 ml was used for elution. Protein that eluted after approximately 450 ml was pooled, diluted as before and collected on a third DEAE column (2.4 cm \times 5 cm) pre-equilibrated with 25 mM Tris-HCl (pH 8 2) This column was eluted in a single step with 200 ml of 50 mM Tris-HCl, 2 mM MgCl₂ and 300 mM NaCl (pH 8.2). The eluate between 60 and 110 ml was collected and the protein precipitated with solid (NH₄)₂SO₄. The white precipitate was redissolved in a minimum amount of 25 mM Tris-HCl (pH 8.2) and passed through a Sephadex G-200 F column (1.8 cm \times 40 cm), which was equilibrated with the same buffer. The fractions containing maximum activity were pooled for use in subsequent work.

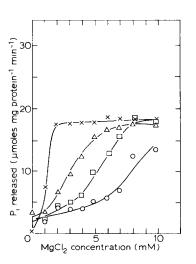
The specific activity of the enzyme from pea was increased 620-fold (with respect to the initial chloroplast extract) by this procedure. Preparations hydrolysed MgPP₁²⁻ at rates in the range of 280-496 μ moles P₁ released per mg protein per min.

Pyrophosphatase assay

Pyrophosphatase was assayed in a final volume of 1 ml containing 100 mM Tris-HCl, MgCl₂ and tetrasodium pyrophosphate in a molar ratio of four to one and at a concentration usually not exceeding 5 mM at pH 8.6 and 25 °C. The reaction was stopped 10 min after addition of protein by HClO₄ and liberated P₁ measured as its molybdenum complex according to the method of Allen¹⁴. No dithiothreitol was

used, since it was found to hydrolyse PP_1 non enzymically, nor EDTA, in order to avoid chelation of Mg^{2+} .

Purified inorganic pyrophosphatase from yeast was supplied by Boehringer. The enzyme preparation was dialysed against 25 mM Tris-HCl (pH 8 2) for 12 h


Preparation of fructose-1,6-diphosphatase

Preparations of fructose-1,6-diphosphatase were preparared and assayed by the procedure of Springer-Lederer *et al.*¹⁵. The fractions obtained by this procedure were also assayed for pyrophosphatase activity.

RESULTS

Properties of chloroplast inorganic pyrophosphatase

Substrate saturation was investigated by increasing $\mathrm{Mg^{2}^{+}}$ concentration either at 4 constant PP₁ concentrations or while maintaining 3 constant $\mathrm{Mg^{2}^{+}}/\mathrm{PP_{1}}$ ratios according to Bloch-Frankenthal¹⁶. Fig. 1 shows the saturation curves of spinach pyrophosphatase at constant PP₁ and increasing $\mathrm{Mg^{2}^{+}}$ concentration. The reciprocal plots of these curves in Fig. 3 shows the activation of the pyrophosphatase by $\mathrm{Mg^{2}^{+}}$ and in Fig. 4 the inhibition of the enzyme by PP₁. These results were generally confirmed by using constant $\mathrm{Mg^{2}^{+}}/\mathrm{PP_{1}}$ ratios in the assay, as in Fig. 2. The plot of V against the substrate $\mathrm{MgPP_{1}^{2}^{-}}$ concentration reveals sigmoidal kinetics suggesting that the enzyme has allosteric properties, with a variable $K_{\rm m}$ (in the sense of substrate concentration required for half maximal rate).

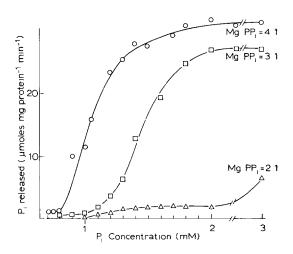


Fig. 1 Substrate saturation curve of inorganic pyrophosphatase (spinach). Assay conditions as described in Materials and Methods, using $4 \mu g$ of protein 1 mM PP_{i} . (), 4 mM PP_{i} , (\triangle); 6 mM PP_{i} , (\square), 8 mM PP_{i} , (\square).

Fig. 2. Substrate saturation curve of inorganic pyrophosphatase (peas) employing constant Mg^{2+}/PP_1 ratios. Assay conditions as described in Materials and Methods using $18 \mu g$ of protein Mg^{2+}/PP_1 ratio 4/1, (\bigcirc), Mg^{2+}/PP_1 ratio 3/1, (\square); Mg^{2+}/PP_1 ratio 2/1, (\triangle)

590 J. D. SCHWENN et al.

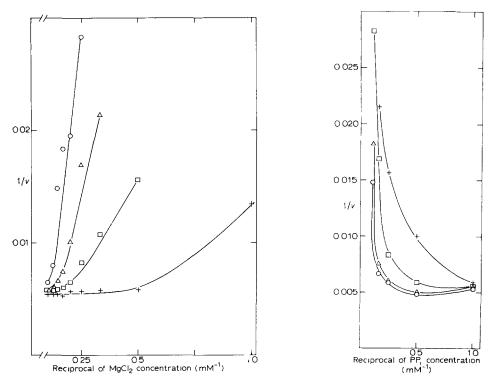


Fig. 3 Activation of pyrophosphatase by Mg^{2+} (spinach). Reciprocal plot of pyrophosphatase activity against Mg^{2+} concentration at four different PP_i concentrations showing the activation by increasing Mg^{2+} (conditions and symbols as in Fig. 1).

Fig. 4. Inhibition of pyrophosphatase (spinach) by free PP_1^{4-} . Reciprocal plot of pyrophosphatase activity against PP_1 concentration at four different Mg^{2+} concentrations showing the inhibition by increasing PP_1^{4-} (assay conditions as in Fig. 1). 2 mM $MgCl_2$, (+); 4 mM $MgCl_2$, (-); 6 mM $MgCl_2$, (-), 8 mM $MgCl_2$, (-).

The activity of the pea pyrophosphatase was measured over a range of pH (Fig. 5). No P_i could be detected in the absence of Mg^{2+} at acidic or neutral pH, indicating that no acid phosphatase was present. Activity was optimal at pH 8.4, but decreased to 30 % at pH 7, showing that a relatively small shift in the stromal pH could regulate the activity of the enzyme.

Table I shows the activity of pea pyrophosphatase with various substrates in the presence of excess Mg²⁺. The pyrophosphatase showed only negligible fructose-1,6-diphosphatase activity. Mg²⁺ could not be replaced by manganese, copper or iron salts confirming earlier findings for pyrophosphatase from different sources ^{5-8,10}.

In order to investigate the possible inhibition of pea and spinach chloroplast pyrophosphatase by P_1 , the enzyme was preincubated with different amounts of P_1 in the presence of Mg^{2+} (20 mM) at 25 °C for 5 min, the reaction started by addition of PP_1 (5 mM). Under these conditions we found an inhibition of 50 % at a P_1 concentration of 1.1 mM. The enzyme was not inhibited by glucose 6-phosphate, DL-glyceraldehyde, sulphate or p-chloromercuribenzoate.

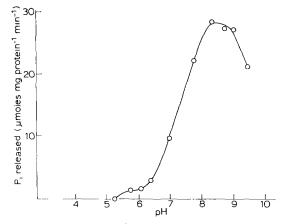


Fig. 5. pH optimum of pyrophosphatase (peas) Assay conditions: 100 mM Tris-MES buffer solutions, 5 mM PP₁, 20 mM MgCl₂ and $18 \mu g$ of protein in 1 ml. Assay run for 5 min at 25 °C. No orthophosphate detected in the absence of Mg²⁺.

TABLE I
SPECIFICITY OF INORGANIC PYROPHOSPHATASE

Assay conditions 100 mM Tris-HCl (pH 8 6), either 5 mM of each substrate and 20 mM MgCl₂, or 10 mM of each metal ion and 2.5 mM PP_i, and pea pyrophosphatase containing 18 μ g protein in a final volume of 1 ml. Assay run for 5 min (PP_i) or 15 min (other substrates) at 25 °C

Substrate	Relative activity	Metal salt	Relative activity
PP,	1.00	MgCl ₂	1.00
Fructose 1,6-diphosphate	0.07	$MnCl_2$	0 01
Glucose 6-phosphate	0 02	CaCl ₂ *	0 00
Ribose 5-phosphate	0 01	CuCl ₂	0.00
3-phosphoglycerate	0 02	FeSO ₄ *	0.00
ATP	0.02	MgSO ₄	0 96
ADP	0 00	~ ~	

^{*} Precipitates

Effects of exogenous PP_i and pyrophosphatase activity on photosynthesis by isolated chloroplasts

Fig. 6 shows the time course of CO₂-dependent oxygen evolution by intact chloroplasts prepared and assayed in media from which both P₁ and MgCl₂ had been omitted. Following the normal induction period¹⁷ there was a detectable acceleration in rate followed by a decline attributed to P₁ deficiency^{1,4}. Certainly the addition of P₁ at this stage produced an immediate and rapid increase in rate (Fig. 6A) However, the addition of PP₁ was without effect until the subsequent addition of MgCl₂ (Fig. 6C) when acceleration of O₂ evolution followed in about 1 min. Even with added pyrophosphatase in the medium (Fig. 6B) PP₁ was without effect until the addition of Mg²⁺ but in these circumstances the attainment of maximal rate occurred within seconds rather than minutes.

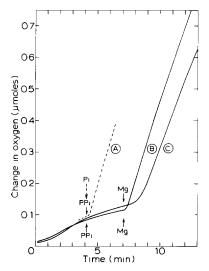


Fig. 6 Oxygen evolution by spinach chloroplasts prepared in P_1 and Mg^2 +-deficient media, showing a requirement for Mg^2 + in PP_1 -dependent photosynthesis. Reaction mixtures contained 0.33 M sorbitol, 1 mM EDTA, 1 mM MnCl₂, 50 mM HEPES, 10 mM NaHCO₃, 1 mM ribose 5-phosphate and 0.1 mM 3-phosphoglycerate, pH 7.6, and chloroplasts equivalent to 200 μ g chlorophyll but, initially, no MgCl₂ Experiment B also contained 100 μ l yeast inorganic pyrophosphatase solution. Additions of P_1 to A (0.5 μ mole), PP_1 to B and C (0.25 μ moles) and MgCl₂ to B and C (4 μ moles) were made as indicated

In Table II, the rates of O₂ evolution by a pair of chloroplast suspensions similar to those of Fig. 6, are compared with the pyrophosphatase activity which was

TABLE II PYROPHOSPHATASE ACTIVITY AND CO_2 -DEPENDENT O_2 EVOLUTION BY CHLOROPLAST SUSPENSIONS PREPARED IN P_i AND Mg^2 +-FREE MEDIA

Conditions as in Fig. 6 except that the reaction mixtures initially contained 0.25 μ mole PP₁ but no ribose 5-phosphate or 3-phosphoglycerate. The pyrophosphatase activity in samples of reaction mixtures were determined as in Materials and Methods

	Consecutive additions	O_2 evolution (µmoles O_2 mg chlorophyll ⁻¹ h^{-1})	P_1 release $(P_1 \cdot mg$ $chlorophyll^{-1} h^{-1})$
Reaction mixture 1	_	4 8	11
	4 µmoles MgCl ₂	23.6	130
	2 5 μmoles PP ₁	25.7	
	2 μmoles		
	3-phosphoglycerate	36.9	_
Reaction mixture 2			
+ added pyrophosphatase	4 μmoles MgCl ₂	20 8	840
	2.5 μmoles PP	10 8	
	2 μmoles		
	3-phosphoglycerate	36 9	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN C

assayed simultaneously. The increase in the rate of O_2 evolution following the addition of $MgCl_2$ is associated with an increase in pyrophosphatase activity of more than 100-fold in the chloroplast suspension without added enzyme. The further addition of ten times the initial amount of PP_1 to the reaction mixture containing added pyrophosphatase, however, resulted in an inhibition of the rate of O_2 evolution. That this inhibition was due to excess P_1 released by the increased pyrophosphatase activity is shown by the subsequent reversal of the inhibition by the addition of 3-phosphoglycerate^{1,17,18}

Partial purification of fructose-1,6-diphosphatase

The final fractions containing fructose-1,6-diphosphatase activity which were obtained by the preparation procedure used¹⁵ were found to be heavily contaminated with pyrophosphatase activity

Pyrophosphatase activity in washed and shocked chloroplasts

In experiments described above, Mg²⁺-free media were used to diminish external pyrophosphatase activity because of the difficulties experienced in preparing intact chloroplasts free of this activity. Table III shows that washing of intact chloro-

TABLE III
PYROPHOSPHATASE ACTIVITY IN WASHED AND SHOCKED CHLOROPLASTS

Rates of P₁ released in μ moles · mg chlorophyll⁻¹ h⁻¹ Assay conditions chloroplasts containing 100 μ g chlorophyll in 100 mM HEPES (pH 7.6), ± 0.33 M sucrose, 5 or 20 mM MgCl₂, 5 mM N_{d4}P₂O₇, 0.4 mM EDTA in 1 ml, incubated 5 min at 25 °C.

Number of washes	$Mg PP_1 = 1 1$		$Mg PP_1 = 4:1$	
	Intact	Ruptured	Intact	Ruptured
none	19 4	282	80 5	323
1	4 1	276	83 6	327
2	5 2	271	87 4	373
3	2 7	208	818	357

plasts could diminish pyrophosphatase activity to a relatively low level if the MgCl₂ concentration in the assay medium (containing 5 mM PP₁) was kept at 5 mM. At 20 mM MgCl₂ the activity was substantial. At both Mg²⁺ concentrations osmotic shock was followed by a large increase in activity. This is consistent with the proposal that the intact envelope normally constitutes a barrier between stromal pyrophosphatase and its substrate. Residual pyrophosphatase activity in intact chloroplast suspensions could be associated with the envelope or adsorbed onto its surface but the difficulty of obtaining chloroplast preparations which are entirely intact makes it more likely that the washing procedure itself always ruptures a small percentage of envelopes.

Direct evidence that the chloroplast envelope is relatively impermeable to PP,

Direct measurements of ³²PP, uptake were undertaken in this laboratory in collaboration with Dr Hans Heldt. The uptake of metabolites by intact chloroplasts

594 J D. SCHWENN et al

has been extensively studied by Heldt *et al.*¹⁹⁻²¹, who have employed preincubation with labelled intermediates followed by centrifugal filtration. Preliminary experiments carried out in this way showed that uptake of ³²P₁ by spinach chloroplasts was at least 300 times as rapid as the uptake of ³²PP₁. The results of a more extensive investigation using this technique will be published by Dr Heldt elsewhere.

DISCUSSION

The pyrophosphatase isolated from the stroma of pea and spinach chloroplasts requires Mg²⁺ and is only fully active at pH values around 8.4. In these respects its properties closely resemble those previously reported for other green plants⁵⁻⁸, *E. coli*¹⁰ and yeast¹¹ pyrophosphatases, with the exception of an enzyme from spinach described by Forti²². The substrate saturation curves (Figs 2 and 3) reveal allosteric characteristics of the enzyme with Mg²⁺ as activator. The pyrophosphatases from maize⁵, sugar cane⁶ and spinach^{7,8} have not been described as allosteric although Klemme *et al.*²³ have reported that the soluble pyrophosphatase of *Rhodospirillum rubrum* is an allosteric enzyme. In view of the proposed Mg²⁺ movement between stroma and thylakoids²⁴ the regulation of this enzyme by Mg²⁺ seems of some importance.

The loss of activity associated with decreasing $Mg^{2+}:PP_1$ ratios indicates first, that Mg^{2+} is needed to form stoichiometric amounts of the active substrate $MgPP_1^{2-}$ (ref. 25), and second, that PP_1^{4-} combines competitively with the enzyme. This substrate inhibition was observed with pyrophosphatases from yeast, *E. coli* and *Rhodospirillum*. Butler¹¹ and Josse and Wong¹⁰ showed that PP_1^{4-} acts as a strong competitive inhibitor. Josse^{25,26} found that the *E. coli* pyrophosphatase binds the free PP_1^{4-} 50 times more strongly than the substrate $MgPP_1^{2-}$ and that Mg_2PP_1 , which occurs at high Mg^{2+} concentrations does not act as a substrate.

The results of Fig. 6 and Table II clearly indicate that the extent and rapidity of the response of photosynthesis by intact chloroplasts to added PP, is determined by the external pyrophosphatase activity. Since the permeability of the chloroplast envelope to PP, is shown to be relatively very low, the responses which normally accompany the addition of PP, are confirmed to be due to P, formed in external hydrolysis by pyrophosphatase released from damaged chloroplasts. In practical terms the results again support the view^{1,17,18} that external P, concentration is a major factor in governing the rate of photosynthesis, and that PP, Mg²⁺ and pyrophosphatase in the external medium exert their control, (largely, if not entirely), by interacting to produce P₁.

Bassham et al.²⁷ have suggested a regulation of photosynthesis in intact chloroplasts by a protein fraction from spinach containing a fructose-1,6-diphosphatase, in the presence of PP_1 and Mg^{2+} . The present results show that protein fractions prepared by their technique¹⁵ may also contain large quantities of pyrophosphatase. Evidence will be presented in a following paper²⁸ which shows that very similar results to those of Bassham et al.²⁷ can be obtained using the highly purified spinach pyrophosphatase described here and that the effects which it produces are ultimately related to the ensuing proportions of P_1 , PP_1 and Mg^{2+} in the assay medium.

ACKNOWLEDGEMENTS

This work was supported by the U.K. Science Research Council. One of us (J.D.S.) wishes to acknowledge receipt of a European Research Fellowship jointly sponsored by the Deutsche Forschungsgemeinschaft and the Royal Society.

We are grateful to EMBO for a travel grant which enabled Dr Heldt to visit our laboratory and to Dr Heldt for allowing us to mention the results of preliminary work (as credited in the text).

We are grateful for the skilled technical assistance of Krystyna Holborow and Christine Case.

REFERENCES

- 1 Cockburn, W., Baldry, C. W. and Walker, D A (1967) Biochim. Biophys. Acta 143, 614-624
- 2 Walker, D. A (1974) Chloroplast and Cell (Northcote, D. H., ed.) Med Tech Publ. Int. Rev. Sci. Bioch., Ser. 1, Vol. II, pp. 1–49, Butterworths, Londou
- 3 Walker, D. A. (1971) in *Methods in Enzymology* (San Pietro, A., ed.) 23, pp. 211–220, Academic Press, London and New York
- 4 Cockburn, W, Baldry, C. W. and Walker, D. A. (1967) Biochim. Biophys. Acta 131, 594-596
- 5 Simmons, S and Butler, L. G. (1969) Biochim. Biophys. Acta 172, 150-157
- 6 Bucke, C. (1970) Phytochemistry 9, 1303-1309
- 7 Karu, A E and Moudrianakis, E N. (1969) Arch Biochem. Biophys 129, 655-671
- 8 El-Badry, A M and Bassham, J A (1970) Biochim Biophys Acta 197, 308-316
- 9 Nagana, B, Venugopal, B and Stripathi, C E (1955) Biochem J. 60, 224-225
- 10 Josse, J. Wong, S. C. K. (1971) in *The Enzymes* (Boyer, P. D., ed.) 3rd edn, Vol. IV, pp. 499–526, Academic Press, London and New York
- 11 Butler, L. G. (1971) in *The Enzymes* (Boyer, P. D, ed) 3rd edn, Vol. IV, pp. 529-539, Academic Press, London and New York
- 12 Arnon, D. I. (1949) Plant Physiol. 24, 1-15
- 13 Delieu, T. and Walker, D. A. (1972) New Phytol. 71, 201-225
- 14 Allen, R J. L (1940) Biochem. J 34, 858-865
- 15 Springer-Lederer, H, El-Badry, A. M, Ottenheym, H. C. J and Bassham, J A (1969) Biochim. Biophys Acta 189, 464-466
- 16 Bloch-Frankenthal, L (1954) Biochem. J. 57, 87-92
- 17 Walker, D. A. (1973) New Phytol 72, 209-235
- 18 Walker, D. A. and Crofts, A. R (1970) Annu. Rev Biochem 39, 389-428
- 19 Heldt, H. W and Rapley, L. (1970) FEBS Lett. 10, 143-148
- 20 Werdan, K. and Heldt, H. W. (1971) Progress in Photosynthesis, Vol II, pp. 1337-1344, Dr W Junk N V., The Hague
- 21 Heldt, H. W., Sauer, F. and Rapley, L. (1971) Progress in Photosynthesis. Vol II, pp. 1344-1355, Dr. W. Junk N V, The Hague
- 22 Forti, G. (1961) Biochim. Biophys Acta 48, 200-202
- 23 Klemme, J. H. and Gest, H. (1971) Progress in Photosynthesis, Vol. II, pp. 1243-1252, Dr. W. Junk N.V., The Hague
- 24 Dilley, R. A and Vernon, L. P (1965) Arch Biochem Biophys. 111, 365-375
- 25 Josse, J (1966) J. Biol Chem 241, 1938-1947
- 26 Josse, J. (1966) J Biol Chem 241, 1948-1955
- 27 Bassham, J. A., El-Badry, A. M., Kirk, M. R., Ottenheym, H. C. J. and Springer-Lederer, H. (1970) Biochim. Biophys. Acta 223, 261-274
- 28 Lilley, R McC., Schwenn, J D. and Walker, D. A (1973) Biochim. Biophys Acta 325, 596-604